Optimization of Fin Parameters to Reduce Entropy Generation and Melting Time of a Latent Heat Storage Unit

Author:

Kalapala Lokesh1,Devanuri Jaya Krishna1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Warangal, Warangal, 506004 TG, India

Abstract

Abstract One of the challenges in the design and development of a latent heat storage unit (LHSU) is to increase the charging and discharging rates which are inherently low because of low thermal conductivity of phase change materials (PCM). Out of various heat transfer enhancement techniques, employing annular fins is very simple, efficient and no fabrication complexity is involved. Fin parameters (fin size and number of fins) significantly influence the enhancement in heat transfer rate. Hence, optimization of fin parameters is necessary for the efficient design of an LHSU. While designing an LHSU along with heat transfer rate, entropy generation should also be considered in order to make it exergetically efficient. Therefore, the present study is aimed at multi-objective optimization of annular fin parameters to minimize the melting time and entropy generation. Fin diameter and the number of fins are taken as the variables. The influence of these two variables on the melting time, average Nusselt number, energy stored, and distribution of entropy is presented. The melting rate is increased, and global entropy generation decreased by increasing the number of fins up to 15. An increase in the fin diameter reduced the melting time while entropy generation got increased. For the multi-objective optimization, the multi-objective optimization based on ratio analysis (MOORA) technique is chosen and the optimized values of fin diameter and number of fins are observed to be 80 mm and 15 respectively. Finally, optimized parameters are represented in non-dimensional form to make them applicable for any size of the LHSU.

Funder

Science and Engineering Research Board - Department of Science and Technology

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3