Experimental Investigation of Melt Coolability Behaviour in an Ex-Vessel Core Catcher - the Effect of Flooding Time

Author:

Vythilingam Ganesh1,Kulkarni Parimal Pramod1,Nayak Arun1

Affiliation:

1. Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India

Abstract

Abstract Some of the advanced nuclear reactors employ an ex-vessel core catcher to mitigate core melt scenarios by stabilizing and cooling the corium for prolonged period by strategically flooding it. The side indirect cooling with top flooding strategy described in this study may lead to water ingression either through the melt crust which may lead to interaction between un-oxidised metal in the melt and water leading to hydrogen production. In order to avoid this deleterious scenario, water ingression into the bulk of the melt should be avoided. The studies described in this manuscript show that water ingression depends on the flooding strategy, i.e. the time delay between top flooding and melt relocation. Two experiments under identical conditions of simulant temperature, melt material and test section geometry were conducted with simulated decay heat of 1 MW/m3. Sodium borosilicate glass was used as the corium simulant. In the first experiment, water was flooded onto the top of melt pool soon after melt relocation. In the second experiment, water flooding at the top of melt pool was made after 30 minutes of the melt relocation. The results show that a finite time delay of introduction of water onto the top of the melt pool is paramount to engender the development of a stable crust around the melt and therefore eliminating water ingression into melt pool and ensuring controlled coolability of the melt.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3