Thermal Stratification in a Pool with Submerged Heater Under Low Frequency Excitation

Author:

Chauhan SatendraPal1,Chandraker Dinesh Kumar2,Kumar Naveen2

Affiliation:

1. Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, Maharashtra, India

2. Reactor Engineering Division, Bhabha Atomic Research centre, Mumbai 400085, Maharashtra, India

Abstract

Abstract Thermal stratification has potential applications in the nuclear and solar industries. Thermal performance of passive residual heat removal systems and solar heaters is affected by the thermal stratification in a pool. Under the seismic condition, thermal stratification behavior of liquid in the pool has never been studied and reported in the literature. The present work focuses on the experimental investigation of thermal stratification in a pool under the seismic condition with the horizontally mounted heater simulating heat exchanger. Effect of heater submergence depth, frequency of excitation and amplitude of displacement on the thermal stratification has been studied. It was observed that the heater submergence depth significantly influences the thermal stratification in a pool. When a pool is subjected to an external excitation, the pool water separates into two zones; convective and impulsive. If the heater submergence depth in the impulsive zone, excitation effects are not found. If heater submergence depth is close to convective zone, significant effects are observed. However, it was observed that only first mode of excitation with large amplitude helps to achieve complete thermal mixing and higher modes of excitation have the minimal on the mitigating of thermal stratification. Non-dimensional stratification number has been evaluated to explain the mitigation of thermal stratification with seismic excitation.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3