Transport phenomena and evolution mechanism of the melt pool during a laser based metal melting process

Author:

Bian Qingfei1,Tian Ke2,Ling Kong2,Chen Yitung3,Zeng Min4,Wang Qiuwang5

Affiliation:

1. Jiangsu University Of Science And Technology Zhenjiang, Jiangsu 212000 China

2. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education Xi’an, Shaanxi 710049 China

3. -- Las Vegas, NV --

4. Scholl of Energy and Power Engineering Xi'an, 710049 China

5. Center of Thermal and Fluid Science,School of Energy and Power Engineering, Xi'an Jiaotong University,Xianning West Road 28#, Xi'an, Shaanxi 710049 China

Abstract

Abstract This article presents a fully three-dimensional numerical study on the process of melt pool evolution. In order to overcome the simplifications used in many existing studies, an enthalpy method is developed for the phase change, and an accurate interface capturing method, i.e., the coupled volume-of-fluid and level set (VOSET) method, is employed to track the moving gas-liquid interface. Meanwhile, corresponding experimental studies are carried out for the purpose of validation. The obtained numerical results show the formed interface morphology during the process of melt pool with its typical sizes and are quantitatively consistent with those data measured in experiments. Based on the numerical results, the thermodynamic phenomena, induced by the interaction between heat and momentum exchange, occurring in the formation of melt pool are presented and discussed. Mechanisms of the melt pool evolution revealed in the present study provide a useful guidance for better controlling the process of additive manufacturing.

Funder

Basic Research Program of Jiangsu Education Department

National Natural Science Foundation of China

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3