Prediction of Thermal Conductivity and Convective Heat Transfer Coefficient of Nanofluids by Local Composition Theory

Author:

Hosseini M. S.1,Mohebbi A.1,Ghader S.1

Affiliation:

1. Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman, 76175-133, Kerman, Iran

Abstract

In this study, a new method based on the local composition theory has been developed to predict thermal conductivity, convective heat transfer coefficient, and viscosity of nanofluids. The nonrandom two liquid (NRTL) model is used for this purpose. The effects of temperature and particle volume concentration on thermal conductivity, convective heat transfer coefficient, and viscosity are investigated. The adjustable parameters of the NRTL model were obtained by fitting with experimental data. The results of the local composition theory are compared with the experimental data of CuO/water, Al2O3/water, TiO2/water, Cu/water, Au/water, Ni/water, TiO2/ethylene glycol, and Al/ethylene glycol (EG) nanofluids and a good agreement between the theory and the experimental data is observed. The absolute average deviation of the model for thermal conductivity was 1.51% in comparison to 42% in conventional models. This parameter for viscosity and convective heat transfer coefficient were 2.91% and 2.13%, respectively. Moreover, a new equation for calculating convective heat transfer coefficient of nanofluids is proposed and tested.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3