FT8-3 Advanced Low Emissions Combustor Design

Author:

Reddy Urmila C.1,Blanchard Christine E.1,Schlein Barry C.2

Affiliation:

1. Pratt and Whitney, 400 Main Street, East Hartford, CT 06108

2. Belcan, 400 Main Street, East Hartford, CT 06108; Pratt and Whitney Operations, 400 Main Street, East Hartford, CT 06108

Abstract

Pratt and Whitney developed a novel water-injected industrial gas turbine combustor liner design that has demonstrated significant reduction in CO emissions when compared with typical film-cooled combustor designs. The CO reduction demonstrated in a prototype test shows that the CO quenching due to cooler film temperatures near the liner wall is a significant source of CO emissions in a conventional water-injected combustor operating on natural gas fuel. This finding paved the way for a combustor design that reduces CO emissions while still maintaining low levels of NOx emissions. This design also has potential for lower NOx since the low CO emissions characteristic enables increased water injection. This paper presents the emissions characteristic measured on prototype hardware and the design of the engine hardware for future validation. Significant reduction in gaseous emissions was demonstrated with the testing of a prototype at the United Technologies Research Center in East Hartford, CT. This reduction in emissions compared with the baseline film-cooled design for a given operating condition has many benefits to the customer, including the reduced need for exhaust catalyst cleanup and extended operating times while still meeting site permits specified in CO tons per year. Other benefits may include the ability to guarantee lower NOx emissions through increased water injection for the current CO emissions output.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3