Modeling On-Sun Tests of a Prototype Solid Particle Receiver for Concentrating Solar Power Processes and Storage

Author:

Ho Clifford K.1,Khalsa Siri S.1,Siegel Nathan P.1

Affiliation:

1. Sandia National Laboratories, Albuquerque, NM

Abstract

A model has been developed to simulate the performance of a prototype solid particle receiver that was recently tested at Sandia National Laboratories. The model includes irradiation from the concentrated solar flux, two-band re-radiation and emission with the cavity, discrete-phase particle transport and heat transfer, gas-phase convection, wall conduction, and radiative and convective heat losses. Simulated temperatures of the particles and cavity walls were compared to measured values for nine on-sun tests. Results showed that the simulated temperature distributions and receiver efficiencies matched closely with trends in experimental data as a function of input power and particle mass flow rate. The average relative error between the simulated and measured efficiencies and increases in particle temperature was less than 10%. Simulations of particle velocities and concentrations as a function of position beneath the release point were also evaluated and compared to measured values collected during unheated tests with average relative errors of 6% and 8%, respectively. The calibrated model is being used in parametric analyses to better understand the impact and interactions of multiple parameters with a goal of optimizing the performance and efficiency of the solid particle receiver.

Publisher

ASMEDC

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3