Retrofitting CO2 Capture to Existing Power Plants as a Fast Track Mitigation Strategy

Author:

Chalmers Hannah1,Gibbins Jon1,Lucquiaud Mathieu1

Affiliation:

1. Imperial College London, London, UK

Abstract

Carbon capture and storage (CCS) is often identified as an important technology for mitigating global carbon dioxide (CO2) emissions. For example, the IEA currently suggests that 160GW of CCS may need to be installed globally by 2030 as part of action to limit greenhouse gas concentrations to 550ppm-CO2eq, with a further 190GW CCS capacity required if a 450ppm-CO2eq target is to be achieved. Since global rollout of proven CCS technologies is not expected to commence until 2020 at the earliest this represents a very challenging build rate. In these circumstances retrofitting CO2 capture to existing plants, probably particularly post-combustion capture on pulverized coal-fired plants, could play an important role in the deployment of CCS as a global strategy for implementing CO2 emissions reductions. Retrofitting obviously reduces the construction activity required for CCS deployment, since fewer additional new power plants are required. Retrofitting CCS to an existing fleet is also an effective way to significantly reduce CO2 emissions from this sector of the electricity generation mix; it is obviously not possible to effect an absolute reduction in coal power sector CO2 emissions simply by adding new plants with CCS to the existing fleet. Although it has been proposed that plants constructed now and in the future can be ‘capture ready’, much of the existing fleet will not have been designed to be suitable for retrofit of CO2 capture. Some particular challenges that may be faced by utilities and investors considering a retrofit project are discussed. Since it is expected that post-combustion capture retrofits to pulverized coal plants will be the most widely applied option for retrofit to the existing fleet (probably regardless of whether base plants were designed to be capture ready or not), a review of the technical and potential economic performance of this option is presented. Power cycle performance penalties when capture is retrofitted need to be addressed, but satisfactory options appear to exist. It also seems likely that the economic performance of post-combustion capture retrofit could be competitive when compared to other options requiring more significant capital expenditure. Further work is, however, required both to develop a generally accepted methodology for assessing retrofit economics (including consideration of the implications of lost output after retrofit under different electricity selling price assumptions) and to apply general technical principles to case studies where site-specific constraints are considered in detail. The overall conclusion from the screening-level analysis reported in this paper is that, depending on project-specific and market-specific conditions, retrofit could be an attractive option, especially for fast track initial demonstration and deployment of CCS. Any unnecessary regulatory or funding barriers to retrofit of existing plants and to their effective operation with CCS should, therefore, be avoided.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3