Convective Heat Transfer of Al2O3 Nanofluids in Porous Media

Author:

Ghaziani Navid O.1,Hassanipour Fatemeh1

Affiliation:

1. Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080 e-mail:

Abstract

In this study, the performance of a heat sink embedded with a porous medium and nanofluids as coolants is analyzed experimentally. The nanofluid is a mixture of de-ionized water and nanoscale Al2O3 particles with three different volumetric concentrations: ζ = 0.41%, 0.58%, and 0.83%. The experimental test section is a rectangular minichannel filled with metal foam, which is electrically heated to provide a constant heat flux. The porous medium is assumed to be homogeneous and the flow regime is laminar. The result of heat transfer enhancement by slurry of Al2O3 nanofluid in porous media is studied under various flow velocities, heat flux, porous media structure, and particle concentration of nanofluid. The effect of particles volume fraction on heat transfer coefficient is also studied. This experimental study discovers and/or confirms the following hypotheses: (1) nanoparticle slurry in conjunction with metal foam has a significant effect on heat transfer rate; (2) there is an optimum permeability for the foam resulting in maximal heat transfer rate; (3) for a fixed particle concentration, smaller particles are more effective in enhancing heat transfer; and (4) increasing particle concentration results in some gains, but this trend weakens after a threshold.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3