Curvature-Sensitive Transition Model Application to Flow Around a Smooth Circular Cylinder

Author:

Hafez Ahmed M.1,Abd El-Rahman Ahmed I.1,Khater Hany A.1

Affiliation:

1. Department of Mechanical Power Engineering, Cairo University , Giza 12613, Egypt

Abstract

Abstract Transition modeling in complex flow situations including adverse pressure gradient, streamline curvature, and massive flow separation represents one of the key challenges in computational fluid dynamics that greatly affects the flow characteristics in many thermal and fluid sciences applications. Here, we report a comparative study that helps investigate the capability of the curvature-sensitive kT−kL−ω−v2 transition model against the original kT−kL−ω algorithm in predicting the flow behavior surrounding a smooth circular cylinder subjected to Reynolds numbers in the range from 3.9×103 to 3.6×106. A C-program that fully accounts for the model's four transport equations is particularly developed and coupled with the transient solver of ansysfluent. The present simulation enables accurate prediction of the distributions of skin-friction and pressure coefficients along with careful specification of the corresponding drag coefficients and angles of separation and transition. The simulation reveals insignificant variations in the bulk flow behaviors using either model in both sub- and critical flow regimes while a remarkable improvement in the supercritical drag result is achieved using the curvature-sensitive model.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3