The Role of Fracture Mechanics in Design Technology

Author:

Sih G. C.1

Affiliation:

1. Institute of Fracture and Solid Mechanics, Lehigh University, Bethlehem, Pa.

Abstract

Fracture mechanics has in recent years become an independent discipline that deals with determining the conditions under which machine or structural elements attain uncontrollable failure by crack propagation. A knowledge of these conditions can assist the designer to safeguard structures against catastrophic fracture. In contrast to the conventional approach, which does not account for flaws initiated in the material by manufacturing procedures, overloads, or fatigue loadings, fracture mechanics [1] assumes that all materials contain cracks from which failure starts. This concept has been used successfully for high-strength/low-toughness materials design and for structures that exhibit brittle behavior. Obtained from laboratory specimens loaded symmetrically with respect to the crack plane is a critical stress intensity factor parameter K1c. It is a characteristic of the material commonly referred to as the fracture toughness value. When machine elements are subjected to combined loading, where symmetry does not exist, the direction of crack initiation is no longer known as an a priori. The condition of crack instability can then be predicted from the strain energy density factor S whose critical value, Sc, is related to K1c from uniaxial tension tests by the relation Sc = (1 − 2ν)K1c2/4 π μ, with ν being the Poisson’s ratio and μ the shear modulus of elasticity. Numerous numerical examples involving press fit, rotating disk, thermally stressed pipe, pressure vessel, etc., are presented to show how fracture mechanics can be used for estimating the load that a member can sustain without causing unstable fracture. The results are compared with those obtained from the conventional design approach whenever possible.

Publisher

ASME International

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applying the strain energy density criterion to fatigue and fracture problems in the transportation industry;Journal of the Chinese Institute of Engineers;2004-09

2. Fracture mechanics of engineering structural components;Fracture Mechanics Methodology;1984

3. Fracture toughness concept applied to methyl methacrylate;Journal of Biomedical Materials Research;1980-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3