Design of Path Tracking Controller for Autonomous Vehicles Through Bias Learning of Vehicle Dynamic Models Under Environmental Uncertainty

Author:

Ren Lichuan1,Xi Zhimin1

Affiliation:

1. Rutgers University, Piscataway, New Jersey, United States

Abstract

Abstract Path tracking error control is an important functionality in the development of autonomous vehicles when a collision-free path has been planned. Large path tracking errors could lead to collision or even out of the control of the vehicle. Vehicle dynamic models are used to minimize the vehicle path tracking error so that control strategies can be designed under different scenarios. However, the vehicle dynamic model may not truly represent the actual vehicle dynamics. Furthermore, the nominal parameter employed in the vehicle dynamic model cannot represent actual operating conditions of the vehicle under environmental uncertainty. This paper presents a learning-based bias modeling method to improve the fidelity of any baseline vehicle dynamics model so that effective path tracking controller design can be achieved through a low fidelity but high-efficiency vehicle dynamic model with the aid of a few experiments or high fidelity simulations. The state-of-the-art of machine learning models, such as Gaussian process (GP) regression, recurrent neural network (RNN), and long short-term memory (LSTM) network, are employed for bias learning and comparison. A high-fidelity vehicle simulator, CARLA, is employed to collect virtual test data and demonstrate the effectiveness of the proposed bias-learning based control strategies under environmental uncertainty.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3