Affiliation:
1. Department of Mechanical Engineering, Wuhan University, Wuhan 430072, China
2. Department of Biomedical Engineering, National University of Singapore, Singapore 117608
Abstract
Abstract
The manipulating objects of the micron scale are easily damaged, hence the microgrippers, the key components in micro manipulating systems, demand precise force control, plus miniaturized size. Consequently, the constant force microgrippers, generally lack the ability to fit different sizes. To avoid the overload damage, apply multi-size microparts and simplify the control method, a novel two-stage compliant constant force microgripper is proposed in this paper. Based on the negative stiffness effect, this gripper is connected in parallel with a two-stage negative stiffness module and a positive stiffness module. Then, the elliptic integral method and the pseudo-rigid-body method are both employed to derive the kinetostatic and dynamic performances. Finally, the analytical results are validated. It is observed that two-stage constant forces of 1.33 N in 305.6 μm and 1.11 N in 330.8 μm are acquired.
Funder
China Postdoctoral Science Foundation
National Natural Science Foundation of China
Shenzhen Science and Technology Program
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献