Dependence of the Yield and Fatigue Strength of the Thread Rolled Mild Steel on Dislocation Density

Author:

Mohandesi J. Aghazadeh1,Rafiee Mohammad A.1,Maffi O.1,Saffarzadeh P.1

Affiliation:

1. Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

Dependence of the yield and fatigue strength of steel bolts with composition in accordance to AISI 1035 manufactured by thread rolling and machining process on dislocation density were investigated. The results indicate that the fatigue strength of the rolled bolts are 55% higher than the machined bolts and by full annealing at 850°C, it reduced to the extent of machined specimen. Partial annealing of the thread rolled bolts at 680°C caused a reduction of fatigue strength by approximately 61% due to reduction in the dislocation density. Fatigue strength was improved by deformation rate (i.e., rolling speed), which is also due to the increasing dislocation density. Yield stress of the studied specimens followed the same pattern as fatigue strength. Considering the obtained results from the low and high speed, partial and full annealed thread rolled specimens, yield stress of the thread rolled bolts has been modeled based on the dislocation density. The obtained results from the model are in good agreement with the experimental results. The contribution to fatigue strength by thread rolling stems from the strain hardening effect which would facilitate the formation of compressive residual stress near the surface layer. The strengthening may be attributed to increasing dislocation density in the ferrite phase (i.e., substructure formation), in addition to the formation of a fine layered structure consisting of elongated pearlite colonies and ferrite grains.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference15 articles.

1. Halmos, G. , 1983, “High Production Roll Forming,” SME (ISBN: 0872630927).

2. Dickson, J. F. , 1992, “Thread Forming Method and Apparatus,” U.S. Patent No. 5,243,843.

3. Thread and Profile Rolling Development;Menn;Wire Ind.

4. Calculation and Design of Thread Rolling Roller for Conical Threads;Guseinov;Chem. Petrol. Eng.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3