3D Printing in Cloud Manufacturing: Model and Platform Design

Author:

Ren Lei1,Wang Shicheng1,Shen Yijun1,Hong Shikai1,Chen Yudi1,Zhang Lin1

Affiliation:

1. Beihang University, Beijing, China

Abstract

Although 3D printing has attracted remarkable attention from both industry and academia society, still only a relatively small number of people have access to required 3D printers and know how to use them. One of the challenges is that how to fill the gap between the unbalanced supply of various 3D printing capabilities and the customized demands from geographically distributed customers. The integration of 3D printing into cloud manufacturing may promote the development of future smart networks of virtual 3D printing cloud, and allow a new service-oriented 3D printing business model to achieve mass customization. This paper presents a primary 3D printing cloud model and an advanced 3D printing cloud model, and analyzes the 3D printing service delivery paradigms in the models. Further, the paper proposes a 3D printing cloud platform architecture design to support the advanced model. The proposed advanced 3D printing cloud model as well as the architecture design can provide a reference for the development of various 3D printing clouds.

Publisher

American Society of Mechanical Engineers

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3