Fog-Enabled Architecture for Data-Driven Cyber-Manufacturing Systems

Author:

Wu Dazhong1,Terpenny Janis1,Zhang Li2,Gao Robert3,Kurfess Thomas4

Affiliation:

1. Pennsylvania State University, University Park, PA

2. General Electric Global Research, Niskayuna, NY

3. Case Western Reserve University, Cleveland, OH

4. Georgia Institute of Technology, Atlanta, GA

Abstract

Over the past few decades, both small- and medium-sized manufacturers as well as large original equipment manufacturers (OEMs) have been faced with an increasing need for low cost and scalable intelligent manufacturing machines. Capabilities are needed for collecting and processing large volumes of real-time data generated from manufacturing machines and processes as well as for diagnosing the root cause of identified defects, predicting their progression, and forecasting maintenance actions proactively to minimize unexpected machine down times. Although cloud computing enables ubiquitous and instant remote access to scalable information and communication technology (ICT) infrastructures and high volume data storage, it has limitations in latency-sensitive applications such as high performance computing and real-time stream analytics. The emergence of fog computing, Internet of Things (IoT), and cyber-physical systems (CPS) represent radical changes in the way sensing systems, along with ICT infrastructures, collect and analyze large volumes of real-time data streams in geographically distributed environments. Ultimately, such technological approaches enable machines to function as an agent that is capable of intelligent behaviors such as automatic fault and failure detection, self-diagnosis, and preventative maintenance scheduling. The objective of this research is to introduce a fog-enabled architecture that consists of smart sensor networks, communication protocols, parallel machine learning software, and private and public clouds. The fog-enabled architecture will have the potential to enable large-scale, geographically distributed online machine and process monitoring, diagnosis, and prognosis that require low latency and high bandwidth in the context of data-driven cyber-manufacturing systems.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Concept and engineering development of cyber physical production systems: a systematic literature review;The International Journal of Advanced Manufacturing Technology;2020-09-25

2. Cloud-Based Parallel Machine Learning for Tool Wear Prediction;Journal of Manufacturing Science and Engineering;2018-02-12

3. A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests;Journal of Manufacturing Science and Engineering;2017-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3