Microstructure and Texture Development in Alpha-Brass Using Repetitive Thermomechanical Processing

Author:

Al-Fadhalah Khaled1

Affiliation:

1. Department of Mechanical Engineering, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait e-mail:

Abstract

Repetitive thermomechanical processing (TMP) has been applied to evaluate the effect of compression strain and temperature on microstructure and texture development in an alpha-brass alloy. Two TMP schemes were employed using four cycles of low-strain compression (ε = 0.15) and annealing, and two cycles of medium-strain compression (ε = 0.3) and annealing. Compression tests were conducted at 25, 250, and −100 °C, while annealing was made at 670 °C for 10 min. Examination by electron backscattered diffraction (EBSD) indicated that the low-strain scheme was capable to increase the fraction of Σ3n boundaries (n = 1, 2, and 3) with increasing cycles, producing maximum fraction of 68%. For medium-strain scheme, a drop in the fraction of Σ3n boundaries occurred in cycle 2. Reducing compression temperature lowered the fraction of Σ3n boundaries for low-strain scheme, while it enhanced the formation of Σ3n boundaries for medium-strain scheme. Annealing textures showed that 〈101〉 compression fiber was strongly retained for samples processed by small-strain scheme, while weakening of 〈101〉 fiber accompanied by the formation of 〈111〉 recrystallization fiber occurred for the medium-strain scheme. The results indicate that the increase in strain energy stored during compression, via increasing strain and/or decreasing deformation temperature, is responsible to favor recrystallization twinning over strain-induced grain boundary migration (SIBM). Both mechanisms are important for the formation of Σ3n boundaries. Yet, SIBM is thought to strongly promote regeneration of Σ3n boundaries at higher TMP cycles. This is consistent with the development of microstructure and texture using small-strain scheme.

Funder

Kuwait University

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3