Experimental and Finite Element Comparison of Various Fixation Designs in Combined Loads

Author:

Shirazi-Adl A.1,Patenaude O.1,Dammak M.2,Zukor D.3

Affiliation:

1. Ge´nie me´canique, E´cole Polytechnique, Montre´al, Que´bec, Canada

2. LASEM, E´cole Nationale d’lnge´nieurs de Sfax, Sfax, Tunisia

3. Department of Orthopædic Surgery, Jewish General Hospital & McGill University, Montre´al, Que´bec, Canada

Abstract

The short- and long-term successes of tibial cementless implants depend on the initial fixation stability often provided by posts and screws. In this work, a metallic plate was fixed to a polyurethane block with either two bone screws, two smooth-surfaced posts, or two novel smooth-surfaced posts with adjustable inclinations. For this last case, inclinations of 0, 1.5, and 3 deg were considered following insertion. A load of 1031 N was eccentrically applied on the plate at an angle of ∼14 deg, which resulted in a 1000 N axial compressive force and a 250 N shear force. The response was measured under static and repetitive loading up to 4000 cycles at 1 Hz. The measured results demonstrate subsidence under load, lift-off on the unloaded side, and horizontal translation of the plate specially at the loaded side. Fatigue loading increased the displacements, primarily during the first 100 cycles. Comparison of various fixation systems indicated that the plate with screw fixation was the stiffest with the least subsidence and liftoff. The increase in post inclination from 0 to 3 deg stiffened the plate by diminishing the liftoff. All fixation systems demonstrated deterioration under repetitive loads. In general, the finite element predictions of the experimental fixation systems were in agreement with measurements. The finite element analyses showed that porous coated posts (modeled with nonlinear interface friction with and without coupling) generated slightly less resistance to liftoff than smooth-surfaced posts. In the presence of porous coated posts, Coulomb friction greatly overestimated the rigidity by reducing the liftoff and subsidence to levels even smaller than those predicted for the design with screw fixation. The sequence of combined load application also influenced the predicted response. Finally, the finite element model incorporating measured interface friction and pull-out responses can be used for the analysis of cementless total joint replacement systems during the post-operation period.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3