Development and Application of Trim Optimization and Parametric Study Using an Evaluation System (SoLuTion) Based on the RANS for Improvement of EEOI

Author:

Lee Jisun1,Yoo Seonoh1,Choi Sangkyu1,Kim Heetaek1,Hong Chunbeom1,Seo Jongsoo1

Affiliation:

1. Samsung Heavy Industries Co., Ltd., Daejeon, Korea

Abstract

In general, the speed power performance of ships is optimized for design speed and draught in accordance with the contract condition. But, the contract condition may not be always the same as the actual operating condition. Therefore, in order to reduce the fuel consumption practically, it is necessary to optimize the performance under various conditions considering the actual voyage. This is the reason that the trim optimization covering various operating profiles becomes the main issue in reducing fuel oil consumption. In this paper, a numerical study is carried out to optimize trim conditions through the computational evaluation system called SoLuTion developed by Samsung Heavy Industries Co. (SHI) with variation in draught, ship speed and voyage trim. In order to get more accurate results in resistance and self-propulsion performance, the Reynolds-Averaged Navier-Stokes (RANS) equations including Volume of the Fluid (VOF) method by Hirt and Nichols (1981) for free-surface boundary condition and moving mesh technique for propeller rotation effect are employed as governing equations. Reynolds Stresses Model (RSM) with the wall function is applied as a turbulence model for turbulent flow computation. Through this study, the followings are the main three factors to be considered in evaluation of the quantitatively accurate speed performance by varying the draught, speed and voyage trim. First, the distance from hull surface to the first grid point should be adjusted to eliminate the effects of frictional resistance. Second, the grid system should be generated to avoid the grid dependency on variation of draught. Finally, the running trim and sinkage of the voyage conditions should be considered. The results of the trim optimization performed numerically are well-matched with the towing test results conducted at Samsung Ship Model Basin(SSMB). As the results of this study, it is confirmed that SoLuTion is a useful and efficient tool for trim optimization and the provided optimum trim will be able to contribute to fuel savings under the operating conditions. From trim optimization study, it is found that there is certain level of effects due to the bulb and transom immersion to find the optimum trim condition. Also SoLuTion is applicable not only to trim optimization but also to parametric studies in optimum shape of the ships considering the actual operating profile.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3