Second Order Wave Force Effects on Tension Leg Platform Wind Turbines in Misaligned Wind and Waves

Author:

Bachynski Erin E.1,Moan Torgeir1

Affiliation:

1. Norwegian University of Science and Technology, Trondheim, Norway

Abstract

Although the majority of studies of tension leg platform wind turbines (TLPWTs) have focused on aligned wind and wave conditions, it is not uncommon for the wind and waves to be significantly misaligned. Wind-wave misalignment is expected to influence both ultimate and fatigue loads. The present work compares the dynamic response of a representative TLPWT in both aligned and misaligned wind and wave conditions, with and without second order sum-frequency potential forces. The contribution of the second order loads to the maximum stress and to the short-term fatigue damage at the tower base, tower top, and tendon fairleads is examined for several operational conditions. The same TLPWT with softened tendons is also studied in order to examine the sensitivity of the results to the system natural frequencies. The fatigue damage decreased in misaligned wind and wave conditions, but the effect of second order forces increased. For the soft TLPWT design, second order forces had an important effect on fatigue in both aligned and misaligned conditions. Despite the increase in side-side loading in misaligned conditions, aligned conditions were associated with larger maximum stresses (in operational conditions).

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3