Numerical Investigation of Thermal Fields Around Subsea Buried Pipelines

Author:

Bai Yanbin1,Niedzwecki John M.1,Sanchez Marcelo1

Affiliation:

1. Texas A&M University, College Station, TX

Abstract

Subsea pipelines transporting hydrocarbons from very deepwater wells or at arctic sites for long distances present some challenging technical problems. The ambient temperature at the seafloor in deepwater may be about 5°C (∼ 41°F or 278 K) and can be even lower in the arctic regions, while the wellhead hydrocarbon temperatures can be in excess of 149°C (∼ 300°F or 422 K). Insulation of these buried pipelines to mitigate this large temperature gradient can be only part of the solution as temperature losses over long distance may require heating systems to avoid deposition of impurities and clogging of the pipeline. The near field thermal gradient in surrounding soil is investigated using complementary 2-D numerical simulations of finite element and boundary element numerical models. A finite element hydraulic-thermal code designed for porous media was used to investigate the time evolution of the natural convection effects due to pipeline heating of the seawater in soil. For a seabed of clay under these conditions, it was determined that the boundary element model could be directed at steady state heat transfer about the pipeline in layered soil conditions addressing trenching and backfill consistent with the burial of the pipeline by a remotely operated vehicle. Parameters that may affect the thermal field around the subsea buried pipeline such as burial depth, thermal power loss and thermal properties of backfilling soils were investigated. It was shown that the thermal conductivity of the backfill has a critical influence on temperature distribution at the pipe wall, and that the pipe burial depth significantly affects temperature distribution on the seabed right above the pipe in deepwater.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3