Simulation-Based Estimation of Collision Risk During Ship Maneuvering in Two-Lane Canal Using Mathematical Maneuvering Group Model and Automatic Identification System Data

Author:

Asmara I. Putu Sindhu12,Kobayashi Eiichi1,Artana Ketut Buda3,Masroeri Agoes A.3,Wakabayashi Nobukazu1

Affiliation:

1. Kobe University, Kobe, Hyogo, Japan

2. Surabaya Shipbuilding State Polytechnic, Surabaya, Indonesia

3. Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Abstract

This paper proposes a simulation-based method to estimate collision risk for a ship operating in a two-lane canal. According to rule 9 of the Colreg-72 navigation rules, in a narrow canal, a vessel shall keep as near to the wall that lies on its starboard side. However, a busy harbor entered through a narrow canal still presents impact hazards. Certain conditions in a two-lane canal, such as a head-on situation in the straight part of the canal during an overtaking maneuver and large curvature of a turning maneuver in the bend part of the canal, could lead to accidents. In the first condition, the ship alters its own course to the port side to overtake another ship in the same lane but the course altered is too large and hits the wall of the canal. In the second condition, the target ship may take an excessively large turn on the bend part of the canal, causing collision with the ship on the opposite lane. Collision risk is represented as the risk of damage to the ship structure and includes the probability of impact accident and severity of structural damage. Predictions of collision probabilities in a two-lane canal have been developed based on a simulation of ship maneuvering using a mathematical maneuvering group (MMG) model and automatic identification system (AIS) data. First, the propeller revolution and rudder angle of the subject ship are simulated to determine safe trajectories in both parts of the canal. Second, impact accidents are simulated for both conditions. The ship’s speed, and current and wind velocity are randomly simulated based on the distribution of the AIS and environment data for the research area. The structural consequences of the impact accident are measured as collision energy losses, based on the external dynamics of ship collision. The research area of the two-lane canal is located at the Madura Strait between the Java and Madura islands in East Java of Indonesia, as shown by the red line in Figure 1. A project for developing a new port and dredging a new two-lane canal to facilitate an increase in the number of ship calls is currently underway in the research area. Figure 1 shows the ships’ trajectories plotted using the AIS data as on January 1, 2011. The trajectories are mostly seen to be coming out of the canal, confirming that it is shallow and needs to be dredged.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3