Option Study on a Steam Pressure Control Logic for SMART

Author:

Kang Han-Ok1,Park Cheon-Tae1

Affiliation:

1. Korea Atomic Energy Research Institute, Daejeon, South Korea

Abstract

Design features of SMART such as a large coolant inventory with a relatively low flow rate and the existence of a once-through steam generator require new steam control logic capable of coping with a prompt load change without inducing severe operational parameter fluctuations. A new MMS SMART model was developed to study the load-following capability and the system parameter manageability of three candidate control logics: the reactor leading, the turbine leading, and the feedwater leading logics. The MMS SMART model was composed of several interacting MMS modules with numerical data, each of which represented a component of the SMART plant and control logic. The Reactor Coolant System, and the Steam and Power Conversion System with their control logics were modeled using default modules such as a pipe, a pump, and a tank. The candidate control logics had been implemented in the model and their dynamic characteristics for the case of a 100%-50%-100% load-following operation with a 25%/min rate were examined. With the reactor-leading control logic implemented, the turbine power was changed with a considerable time delay, which was mainly due to coolant temperature signal retardation to the feedwater controller. The steam pressure variation was very limited for the reactor-leading control logic. With the turbine-leading control logic, the turbine power was manipulated well to match the reference value, whereas relatively large fluctuations of the steam pressure and the coolant temperature occurred. The steam pressure swung with a comparatively large amplitude and the peak value of the fluctuation was not reduced even with larger gain values of the PI controller. This steam pressure swing was considerably decreased with the feedwater leading control logic, while the reactor power and the coolant temperatures had similar trends to those of the turbine leading control logic.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3