Assessment of DES Multiscale Turbulence Models for Prediction of Flow and Heat Transfer in an Axial-Channel Rod Configuration

Author:

Basu Debashis1,Das Kaushik1,Painter Scott L.1,Howard Lane D.1,Green Steven T.1

Affiliation:

1. Southwest Research Institute®, San Antonio, TX

Abstract

This paper presents results of a computational study conducted to assess the multiscale resolution capabilities and limitations of different Detached Eddy Simulation (DES) multiscale turbulence models in unsteady flow predictions for internal axial flow in a single rod channel configuration. Two different DES models are compared in the present analysis. The DES models are based on the Spalart-Allmaras (S-A) one-equation model and the two-equation realizable k-ε model. A detailed assessment of the DES turbulence model coefficient for the S-A based DES model is presented. The predicted time-averaged mean velocity and turbulent stresses are compared with the available experimental results. Flow unsteadiness, which is important for determining heat, momentum, and mass transfer in the gap region, is presented through time histories and spectra of flow quantities. The unsteady spectra for the velocity fluctuations are also compared with the experimental observations. The results demonstrate that the DES turbulence model coefficient significantly influence the predicted solution. The realizable k-ε-model-based DES model is found to be numerically more stable than the one-equation S-A-based DES model. Predicted results demonstrate that the modifications need to be incorporated in the current DES model formulations for proper prediction of wall bounded internal turbulent flows.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aerodynamic noise prediction of a high-speed centrifugal fan considering impeller-eccentric effect;Engineering Applications of Computational Fluid Mechanics;2022-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3