Ab Initio Investigation of Strain Dependent Atomistic Interactions at Two Tropocollagen-Hydroxyapatite Interfaces

Author:

Dubey Devendra K.,Tomar Vikas1

Affiliation:

1. e-mail: tomar@purdue.edu School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907

Abstract

Tropocollagen (TC) and hydroxyapatite (HAP) interfaces are one of the main load bearing entities in bone family of materials. Atomistic interactions in such interfaces occur in a variety of chemical environments under a range of biomechanical loading conditions. It is challenging to investigate such interactions using traditional analytical or using classical molecular simulation approaches owing to their limitations in predicting bond strength change as a function of change in chemical environment. In the present work, 3D ab initio molecular dynamics simulations are used to understand such atomistic interactions by analyzing tensile strain dependent deformation mechanism and strength of two structurally distinct idealized TC-HAP interfaces in hydrated as well as unhydrated environments. Analyses suggest that the presence of water molecules leads to modification of H-bond density at the interfaces that also depends upon the level of strain. TC molecules become stiffer in the presence of water due to the presence of H-bonds. Bond forming-and-breaking cycle change as a function of H-bond density lies at the heart of TC-HAP interfacial shear deformation. Consequently, interfaces with TC molecule placed flat on the HAP crystal surface experience significantly higher shear stress during deformation in comparison to the interfaces with TC molecule placed with their axes perpendicular to the HAP surface.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3