Dynamics of a High-Frequency Fuel Actuator and its Applications for Combustion Instability Control

Author:

Yi Tongxun1,Gutmark Ephraim J.1

Affiliation:

1. Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45220-0070

Abstract

The present paper performs complementary experimental and theoretical investigations of a pump-style, high-frequency, magnetostrictive fuel actuator, which achieves fuel modulations by periodically “pushing” fuel out of a piston-cylinder unit instead of by modulating the flow area. The low-order models are developed to identify relevant parameters and investigate their influences on fuel modulations. This fuel actuator is proprietary, its detailed internal structure and dimension are not available, so only qualitative comparisons between the model predictions and experiments are made. Experiments validate the trend of the model predictions. A system-identification-based LQG controller is designed to quickly suppress strong interferences of fuel modulations with the mean fuel flow rate. Improvements to the fuel setup have been made according to the model predictions, which have been experimentally shown to be beneficial to combustion instability control.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Application of a Quasi-Static Adaptive Controller to a Dual Independent Swirl Combustor;Combustion Science and Technology;2024-02-08

2. Active control of thermoacoustic instability;Thermoacoustic Combustion Instability Control;2023

3. A review of active control approaches in stabilizing combustion systems in aerospace industry;Progress in Aerospace Sciences;2018-02

4. Determination of the Instantaneous Fuel Flow Rate Out of a Fuel Nozzle;Journal of Engineering for Gas Turbines and Power;2009-10-30

5. References;Fundamentals and Applications of Modern Flow Control;2009-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3