Affiliation:
1. Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45220-0070
Abstract
The present paper performs complementary experimental and theoretical investigations of a pump-style, high-frequency, magnetostrictive fuel actuator, which achieves fuel modulations by periodically “pushing” fuel out of a piston-cylinder unit instead of by modulating the flow area. The low-order models are developed to identify relevant parameters and investigate their influences on fuel modulations. This fuel actuator is proprietary, its detailed internal structure and dimension are not available, so only qualitative comparisons between the model predictions and experiments are made. Experiments validate the trend of the model predictions. A system-identification-based LQG controller is designed to quickly suppress strong interferences of fuel modulations with the mean fuel flow rate. Improvements to the fuel setup have been made according to the model predictions, which have been experimentally shown to be beneficial to combustion instability control.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献