The Effects of Personalized Versus Generic Scaling of Body Segment Masses on Joint Torques During Stationary Wheelchair Racing

Author:

Lewis Amy R.12,Robertson William S. P.2,Phillips Elissa J.3,Grimshaw Paul N.2,Portus Marc3

Affiliation:

1. Movement Science, Australian Institute of Sport, Canberra 2617, Australia;

2. School of Mechanical Engineering, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide 5005, Australia e-mail:

3. Movement Science, Australian Institute of Sport, Canberra 2617, Australia e-mail:

Abstract

The anthropometries of elite wheelchair racing athletes differ from the generic, able-bodied anthropometries commonly used in computational biomechanical simulations. The impact of using able-bodied parameters on the accuracy of simulations involving wheelchair racing is currently unknown. In this study, athlete-specific mass segment inertial parameters of the head and neck, torso, upper arm, forearm, hand, thigh, shank, and feet for five elite wheelchair athletes were calculated using dual-energy X-ray absorptiometry (DXA) scans. These were compared against commonly used anthropometrics parameters of data presented in the literature. A computational biomechanical simulation of wheelchair propulsion using the upper extremity dynamic model in opensim assessed the sensitivity of athlete-specific mass parameters using Kruskal–Wallis analysis and Spearman correlations. Substantial between-athlete body mass distribution variances (thigh mass between 7.8% and 22.4% total body mass) and between-limb asymmetries (<62.4% segment mass; 3.1 kg) were observed. Compared to nonathletic able-bodied anthropometric data, wheelchair racing athletes demonstrated greater mass in the upper extremities (up to 3.8% total body mass) and less in the lower extremities (up to 9.8% total body mass). Computational simulations were sensitive to individual body mass distribution, with joint torques increasing by up to 31.5% when the scaling of segment masses (measured or generic) differed by up to 2.3% total body mass. These data suggest that nonathletic, able-bodied mass segment inertial parameters are inappropriate for analyzing elite wheelchair racing motion.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3