Damage Mechanisms of Material in Single-Cone Scratching

Author:

Peng Linfa12,Xu Zhutian12,Mao Mengyun34,Lai Xinmin12,Fu Ming Wang5

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China;

2. Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China

3. Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240China;

4. State Key Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong

5. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong

Abstract

Abstract The scratching test has been a key method to characterize the basic mechanics of material in vast scenarios. Although attentions have been paid to this field for decades, a comprehensive analytical framework, which includes material flow, fracture initiation, and crack propagation, is still missing. The wide application of scratching test and the accurate description of material behaviors in friction is thus limited. To address the problem, an analytical frame model was established in this study. The strain distribution and pileup ratio in the symmetry section of the front ridge was calculated. Furthermore, the ductile fracture law was also included to predict the mechanism and the initiation location of fracture in the scratching process. The predictive results were further validated by scanning electron microscope (SEM) observations of the scratched grooves. The effects of cone angle and material properties on the damage mechanisms of material in the scratching process were studied. It was revealed that the damage mechanism changes from shear failure to tensile failure, and further to plastic deformation with the increase of cone angle and the ratio of yielding stress to Young’s modulus. Finally, a map of the damage mechanism of material in the scratching process was obtained by utilizing the developed model. The presented works are meaningful to the understanding of material behavior in ploughing and helpful in predicting and controlling the surface quality of those parts subject to different machining and forming processes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Science and Technology Innovation Plan Of Shanghai Science and Technology Commission

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3