Experimental and Numerical Investigations of Turbocharger Rotors on Full-Floating Ring Bearings With Circumferential Oil-Groove

Author:

Chatzisavvas Ioannis1,Nowald Gerrit1,Schweizer Bernhard1,Koutsovasilis Panagiotis2

Affiliation:

1. Technical University Darmstadt, Darmstadt, Germany

2. BorgWarner Turbo Systems Engineering GmbH, Kirchheimbolanden, Germany

Abstract

This work presents experimental and numerical investigations into the vibrations of turbocharger rotors on full-floating ring bearings with a circumferential oil-groove. The pressure distribution in the fluid-film bearings is calculated through the Reynolds equation using a highly efficient global Galerkin approach with suitable trial and test functions. The numerical efficiency of the method is markedly increased as the resultant linear system is solved symbolically, establishing a semi-analytical solution. The temperature in the oil-film may increase due to the mechanical power dissipation, affecting the pressure distribution and the load capacity of the bearing. Therefore, a reduced thermal energy model is implemented together with the Reynolds equation to account for the variable oil-viscosity and for the thermal expansion of the surrounding solids. The thermal energy balance equations are implemented in a transient form, i.e. including the time dependent temperature term. The corresponding system of nonlinear differential equations is efficiently solved, leading to a further significant reduction in simulation times. The hydrodynamic bearing model including the thermal effects is finally coupled with the equations of motion of a turbocharger rotor and numerical run-up simulations are compared with experimental results. The comparisons show that the numerical model captures adequately the dynamics of the system, giving precise information about the frequencies and the amplitudes of the synchronous and the self-excited subsynchronous rotor vibrations.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3