Comprehensive Numerical Modeling and Analysis of a Cell-Based Indirect Internal Reforming Tubular SOFC

Author:

Nishino Takafumi1,Iwai Hiroshi1,Suzuki Kenjiro2

Affiliation:

1. Department of Mechanical Engineering, Kyoto University, Kyoto, 606-8501, Japan

2. Department of Machinery and Control Systems, Shibaura Institute of Technology, Saitama, 337-8570, Japan

Abstract

A comprehensive numerical model of an indirect internal reforming tubular Solid Oxide Fuel Cell (IIR-T-SOFC) has been developed. Two-dimensional axisymmetry of the velocity, temperature, and mass transfer fields was assumed in the model, but accommodating the peripheral nonuniformity of electric potential and electric current fields in the tubular cell for the case with internal reforming and electrochemical reactions. By using the developed model, it was examined how the thermal field and power generation characteristics of the cell are affected by gas inlet conditions and filling pattern of the reforming catalyst inside the fuel feed tube. In particular, optimization of the catalyst distribution pattern was demonstrated to be effective in the reduction of the maximum temperature and temperature gradient, in the mitigation of the possible appearance of a hot spot and therefore in making the life of a fuel cell longer with little loss of the power generation performance of the cell.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3