Investigation of Lean Premixed Swirl-Stabilized Hydrogen Burner With Axial Air Injection Using OH-PLIF Imaging

Author:

Reichel Thoralf G.1,Goeckeler Katharina2,Paschereit Oliver2

Affiliation:

1. Chair of Fluid Dynamics, Hermann-Föttinger-Institut, Technische Universität Berlin, Müller-Breslau-Str. 8, Berlin 10623, Germany e-mail:

2. Chair of Fluid Dynamics, Hermann-Föttinger-Institut, Technische Universität Berlin, Müller-Breslau-Str. 8, Berlin 10623, Germany

Abstract

In the context of lean premixed combustion, the prevention of upstream flame propagation in the premixing zone, referred to as flashback (FB), is a crucial challenge related to the application of hydrogen as a fuel for gas turbines. The location of flame anchoring and its impact on FB tendencies in a technically premixed, swirl-stabilized hydrogen burner are investigated experimentally at atmospheric pressure conditions using planar laser-induced fluorescence of hydroxyl radicals (OH-PLIF). The inlet conditions are systematically varied with respect to equivalence ratio (ϕ=0.2−1.0), bulk air velocity u0 = 30–90 m/s, and burner preheat temperature ranging from 300 K to 700 K. The burner is mounted in an atmospheric combustion test rig, firing at a power of up to 220 kW into a 105 mm diameter quartz cylinder, which provides optical access to the flame region. The experiments were performed using an in-house burner design that previously proved to be highly resistant against FB occurrence by applying the axial air injection strategy. Axial air injection constitutes a nonswirling air jet on the central axis of the radial swirl generator. While a high rate of axial air injection yields excellent FB resistance, reduced rates of air injection are utilized to trigger FB, which allowed to investigate the near FB flame behavior. Results show that both, fuel momentum of hydrogen and axial air injection, alter the isothermal flow field as they cause a downstream shift of vortex breakdown and, thus, the axial flame front location. Such a shift is proven beneficial for FB resistance from the recorded FB limits. This effect was quantified by applying an edge detection algorithm to the OH-PLIF images, in order to extract the location of maximum flame front probability xF. By these means, it was revealed that for hydrogen xF is shifted downstream with increasing equivalence ratio due to the added momentum of the fuel flow, superseding any parallel augmentation in the turbulent flame speed. The parameter xF is identified to be governed by J, the momentum ratio between fuel and air flow, over a wide range of inlet conditions. These results contribute to the understanding of the sensitivity of FB to changes in the flow field, stemming from geometry changes or specific fuel properties.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3