Effect of SiO2 Coating on Microstructure and Electrochemical Properties of LiNi0.5Mn1.5O4 Cathode Material

Author:

Du Jinjing1,Guo Yuehao1,Zhou Meng1,Cui Yaru1,Wang Bin1,Li Qian1,Zhu Jun1,Zhao Dandan1

Affiliation:

1. Xi’an University of Architecture and Technology School of Metallurgy Engineering, , 4 Box, Xi’an 710055 , China

Abstract

Abstract We present a simple method for producing SiO2-modified LiNi0.5Mn1.5O4 (LNMO) cathode materials. Manganese carbonate was directly mixed with nickel nitrate and lithium hydroxide, and a spherical structure LNMO cathode material was prepared by two-step calcination, then ethyl orthosilicate and LNMO powder were simply mixed in solid and liquid phases to prepare SiO2-coated LNMO material. The effect of SiO2 coating on the structure of LNMO was studied by diffraction of X-rays, scanning electron microscope (SEM), transmission electron microscope (TEM), and thermogravimetric analysis and differential scanning calorimetry. An amorphous SiO2 coating layer developed on the surface of the LNMO particles in the modification and this could alleviate the strike of hydrogen fluoride (HF) caused by electrolyte decomposition as well as the development of a solid electrolyte interphase. The electrochemical performance of the coated material was as follows: when the amount of SiO2 was 0 wt%, 1 wt%, 2 wt%, and 3 wt%, the initial discharge capacity of the sample was 98.2, 84.1, 101.3, and 89.8mAh/g, respectively. After 50 charge−discharge cycles, the capacity retention rates are 92.7%, 66.8%, 97.9%, and 93.8%, respectively. The cyclic stability of the samples can be significantly improved when the SiO2 coating amount is 2 wt% and 3 wt%, indicating that SiO2 coating can not only improve the discharge-specific capacity of the material but also improve its cyclic stability.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3