Quantifying the Effect of Body Habitus on Cardiac Auscultation Via Computational Hemoacoustics

Author:

Lee David Hojun1,Seo Jung-Hee1,Mittal Rajat1

Affiliation:

1. Department of Mechanical Engineering, Johns Hopkins University , 3400 N Charles Street, Baltimore, MD 21218

Abstract

Abstract The effect of body habitus on auscultation of heart murmurs is investigated via computational hemoacoustic modeling. The source of the heart murmur is first obtained from a hemodynamic simulation of blood flow through a stenosed aortic valve. This sound source is then placed at the aortic valve location in four distinct human thorax models, and the propagation of the murmur in each thorax model is simulated by solving the elastic wave equations in the time-domain. Placing the same sound source in different thorax models allows for the disambiguation of the effect of body habitus on cardiac auscultation. The surface acceleration resulting from the murmur on each subject's chest surface shows that subjects with higher body-mass index and thoracic cross-sectional area yield smaller acceleration values for the S1 sound. Moreover, the spectral analysis of the signal shows that slope from linear regression in the normal heart sound frequency range (10–150 Hz) is larger for children at the aortic, pulmonic, and mitral auscultation points compared to that for adults. The slope in the murmur frequency range (150–400 Hz) was larger for female subjects at the mitral point compared to that for male subjects. The trends from the results show the potential of the proposed computational method to provide quantitative insights regarding the effect of various anatomical factors on cardiac auscultation.

Funder

Johns Hopkins University

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference17 articles.

1. Recent Developments in Sensors for Wearable Device Applications;Anal. Bioanal. Chem.,2021

2. Wearable-Device-Measured Physical Activity and Future Health Risk;Nat. Med.,2020

3. The First 200 Years of Cardiac Auscultation and Future Perspectives;J. Multidiscip. Healthcare,2019

4. Development of Digital Stethoscope for Telemedicine;J. Med. Eng. Technol.,2016

5. Stethovest: A Simultaneous Multichannel Wearable System for Cardiac Acoustic Mapping,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3