A Comparative Study of Crystal Viscoplastic Modeling of Directionally Solidified Nickel-Base Superalloys

Author:

Wijeyeratne Navindra1,Irmak Firat1,Gordon Ali P.1

Affiliation:

1. Department of Mechanical Engineering, University of Central Florida , Orlando, FL 32816

Abstract

Abstract Nickel-base superalloys (NBSAs) are a group of materials that are used in high-temperature applications. This work primarily focuses on directionally solidified (DS) NBSAs. Directionally solidified materials are comprised of columnar grains which are parallel to the 〈001〉 direction. Crystal viscoplastic (CVP) models can simulate the effects of temperature and orientation dependence under a variety of loading conditions such as tensile, low cycle fatigue (LCF), and thermomechanical fatigue (TMF). The CVP model is initially developed for a single crystal (SX) material and then adapted to DS material to represent the columnar grain structure. In past studies, the development of CVP models for DS materials was mainly accomplished by applying the SX CVP model to the DS materials implicitly or explicitly. Both of these modeling approaches require the application of the SX CVP model to multiple grains resulting in them being highly computationally expensive. A crystal viscoplastic model for DS materials that circumvents the modeling of individual grains was presented by the authors at turbo-expo 2021. The primary objective of this work is to utilize the three types of DS-CVP models for the same materials to investigate their performance. Comparisons will be performed at various temperatures and orientations. The models are compared to analyze their pros and cons and applicability, etc. Comparisons of these three types of modeling approaches applied to the same material have not been presented before in the literature and will provide an excellent insight into the usability of these constitutive models.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference22 articles.

1. Thermomechanical Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy;ASME J. Eng. Mater. Technol.,2005

2. Tensile Property and Deformation Behavior of a Directionally Solidified Ni-Base Superalloy;Mater. Sci. Eng. A,2010

3. Crystal Visco-Plastic Model for Directionally Solidified Ni-Base Superalloys Under Monotonic and Low Cycle Fatigue,2021

4. Predicting Responses of a Single Crystal Ni-Base Superalloy Under a Wide Range of Monotonic and Cyclic Conditions,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3