Observations on the Mechanisms of Fatigue in Eutectic Pb-Sn Solder Joints

Author:

Tribula D.1,Grivas D.1,Frear D. R.1,Morris J. W.1

Affiliation:

1. Center for Advanced Materials, Lawrence Berkeley Laboratory and Department of Materials Science, University of California, Berkeley, Calif. 94720

Abstract

Near-eutectic Pb-Sn solders are widely used for joints in electrical devices. These are liable to failure by thermal fatigue during operation of the device. Since the thermal fatigue load is often in shear, mechanisms of thermal fatigue in shear are of particular interest. Recent research has shown that the thermal fatigue of eutectic solders in shear is preceded by the formation of bands of coarsened material in the eutectic microstructure, which concentrate the deformation and cause the nucleation of fatigue cracks. Such coarsened bands are also observed in isothermal fatigue and unidirectional creep in shear. Since creep experiments are relatively simple to conduct and analyze, these have been used to study the formation and growth of coarsened bands. The mechanism includes three steps: the formation of inhomogeneous shear bands, the onset of recrystallization in the shear band to create a planar region of coarsened material, and the propagation of the coarsened band by progressive recrystallization at its tip. The results are applied to thermal fatigue and some of their implications are discussed.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3