Swirl Brake Design for Improved Rotordynamic Vibration Stability Based on Computational Fluid Dynamics System Level Modeling

Author:

Shujan Ali MD1,Mortazavi Farzam2,Palazzolo Alan1

Affiliation:

1. Texas A&M University Department of Mechanical Engineering, , College Station, TX 77843

2. Rotating Machinery Services Inc. , Bethlehem, PA 18020

Abstract

Abstract The accurate characterization of compressor rotordynamic coefficients during the design phase reduces the risk of subsynchronous vibration problems occurring in the field. Although rotordynamists extensively investigate discrete compressor components (such as seals and front shrouds) to tackle instability issues, integrated or system-level analysis of compressor rotordynamics is very sparse. In reality, the impeller, eye-labyrinth seal, and the front shroud heavily influence one another; and the collective dynamic behavior of the system differs from the sum of the dynamic behavior of isolated components. A computational fluid dynamics (CFD)-based approach is taken to evaluate the dynamic behavior of the system as a whole. The geometry and operating conditions in this work are based on the recent experimental study of Song et al. (2019, “Non-Axisymmetric Flows and Rotordynamic Forces in an Eccentric Shrouded Centrifugal Compressor—Part 1: Measurement,” ASME J. Eng. Gas Turbines Power, 141(11), p. 111014. 10.1115/1.4044874) on centrifugal compressor. The commercial CFD code cfx 19.0 is used to resolve Reynolds-averaged Navier–Stokes equations to quantify the eye-labyrinth seal and front cavity stiffness, damping, and added mass. The entire compressor stage is modeled to uncover the coupled behavior of the components and assess the stability of the whole system instead of just discrete components. In the current work, three CFD approaches, namely quasi-steady, transient static eccentricity, and transient mesh deformation techniques are studied and benchmarked against analytical and experimental results from the literature. Having established the efficacy of the proposed approach, four types of swirl brakes are proposed and analyzed for stability. The novel swirl brakes create negative swirls at the brake cavities and stabilize both the front shroud and the eye-labyrinth seal simultaneously.

Publisher

ASME International

Reference53 articles.

1. Vibration Characteristics of the HPOTP (High-Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine);Childs;ASME J. Eng. Gas Turbines Power,1985

2. Theory Versus Experiments for Leakage and Rotordynamic Coefficients of Circumferentially-Grooved Liquid Annular Seals With L/D of 0.45;Marquette,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3