Effects of Hall Current and Magnetic Field Inclination on Hydromagnetic Natural Convection Flow in a Micro-Channel With Asymmetric Thermal Boundary Condition

Author:

Jha Basant K.1,Malgwi Peter B.1

Affiliation:

1. Department of Mathematics, Ahmadu Bello University, Zaria 810107, Nigeria

Abstract

AbstractThis study examines the impact of induced magnetic field and Hall current on steady fully developed hydromagnetic natural convection flow in a micro-channel under the action of an inclined magnetic field. The mathematical model responsible for the present physical situation is presented in a dimensionless form under relevant boundary conditions. The governing coupled equations are solved exactly. A parametric study of some physical parameters is conducted and a representative set of numerical results for the velocity field, the induced magnetic field, induced current density, volume flow rate, and skin friction on the micro-channel surfaces are illustrated graphically. It is observed that magnetic field inclination plays an important role in flow formation inside the micro-channel. Numerical computation reveals that the increase in inclination angle reduces the hydromagnetic drag leading to enhancement in primary fluid velocity, while the impact is just converse on the secondary fluid velocity. Furthermore, the increase in Hall current parameter increases the magnitude of the fluid velocity in both primary and secondary flow directions.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3