Destabilization of Film Boiling Due to Arrival of a Pressure Shock—Part I: Experimental

Author:

Inoue A.1,Bankoff S. G.2

Affiliation:

1. Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan

2. Chemical Engineering Department, Northwestern University, Evanston, IL 60201

Abstract

Transient heat transfer from an electrically-heated 3 mm o.d. horizontal tube, initially in subcooled film boiling, was measured immediately after passage of a shock wave of 1–5 × 105 N/m2 over-pressure. The fluids tested were Freon-113 and 95 percent ethanol-5 percent water at initially 0.5–2 × 105 N/m2 at 22–24° C. Transient heat transfer rates, averaged over 0.5–1 ms after vapor film collapse, ranged up to 20 times the steady-state value. The maximum transient flux occurred at supercritical contact temperatures, with frequently a minimum in the range of contact temperatures between the homogeneous nucleation and the critical temperature. Photography at 5000 frames/s showed apparently complete vapor film collapse within one or two frames, followed by re-establishment of film boiling in ∼1 ms, and eventually nucleate boiling in ∼100 ms. The surface temperature which gave the highest peak transient flux shifted appreciably with increasing shock pressure, which indicates some compressibility even after “contact” was made. Implications for vapor explosions are discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. COMSOL Simulation for Design of Induction Heating System in VULCAN Facility;Science and Technology of Nuclear Installations;2021-08-19

2. Corium behavior and steam explosion risks: A review of experiments;Annals of Nuclear Energy;2018-11

3. Microscale Interfacial Behavior at Vapor Film Collapse on High-Temperature Particle Surface;Transactions of the Atomic Energy Society of Japan;2009

4. A possible mechanism of triggering a vapor explosion;High Temperature;2006-11

5. Alternative Fragmentation Theory for a Melt Droplet;Journal of Thermophysics and Heat Transfer;2005-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3