Fluidized Bed Steam Gasification of Solid Biomass: Analysis and Optimization of Plant Operation Using Process Simulation

Author:

Pro¨ll Tobias1,Rauch Reinhard1,Aichernig Christian2,Hofbauer Hermann1

Affiliation:

1. Vienna University of Technology, Vienna, Austria

2. Repotec Umwelttechnik GmbH, Guessing, Austria

Abstract

Fluidized bed steam gasification of solid biomass yields a high quality producer gas, which can be used for efficient combined heat and power production (CHP) and as an intermediate product for chemical syntheses. In order to study the behavior of an 8 MW (fuel power) CHP plant, which has been in successful operation since 2001, a comprehensive model library has been developed for the equation-oriented process simulation software IPSEpro. The models are validated with measured data from the commercial scale plant. Because every model is based on the conservation of mass and energy, the simulation also allows the validation of measured data. By solution of a system describing the entire process, which uses measured data as input, a reference case for actual plant operation can be defined. In a next step, the behavior of the plant is studied during variations of selected parameters. Therefore, a model of the gasification reactor, which is able to describe the behavior during parameter variation, is necessary. It can be shown that fuel water content and gasification temperature significantly influence the global plant performance. The simulation predicts the efficiency of the existing power plant in optimized operation. Finally, part load behavior is investigated and a performance map of the CHP plant is presented. The results show that CHP-concepts based on fluidized bed steam gasification can reach high electric efficiencies and high overall fuel utilization rates even at small plant capacities of 10 MW fuel power.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3