Experimental and Unsteady Numerical Investigation of the Tip Clearance Noise of an Axial Fan

Author:

Zhu Tao1,Carolus Thomas H.1

Affiliation:

1. University of Siegen, Siegen, Germany

Abstract

The aerodynamic and aeroacoustic performance of axial fans are strongly affected by the unavoidable tip clearance. Two identical fan impellers but with different tip clearance ratio were investigated. Unsteady wall pressure fluctuations in the tip region of the rotating blades and on the interior wall of the duct type shroud and the overall sound radiated were analysed by an unsteady numerical Scale-Adaptive Simulation (SAS) and unsteady surface pressure measurements in both, the stationary and rotating system. Based on SAS-predicted pressure fluctuations on the blade surfaces the acoustic analogy according to Ffowcs Williams and Hawkings (FWH) was employed to calculate the sound pressure in the far field. In general, experimentally and numerically determined unsteady flow were found to be a tendentially good agreement. The spatial and temporal structure of the tip vortex system and the resulting unsteady pressure distribution on the surfaces in the vicinity of the blade tips was revealed in good detail. The vortices’ strength and trajectories as well as the unsteadiness are controlled by the size of the tip clearance and the operating point: As tip clearance is increased blade/vortex interaction becomes more prevalent and with it the unsteady surface pressure and eventually the sound radiated into the far field. The broadband tip clearance noise was acceptably predicted from the simulation results, while the prediction at discrete frequency should still be improved in the further work.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3