Affiliation:
1. Department of Industrial Design, National Institute of Technology Rourkela, Rourkela 769008, India
Abstract
Abstract
Present research inspects the performance of rotor–bearing–coupling system in the presence of active magnetic bearings (AMBs). A methodology is suggested to quantify various fault characteristics along with AMB characteristic parameters of a coupled turbine generator system. A simplest possible turbogenerator system is modeled to analyze coupling misalignment. Conventional methodology to estimate dynamic system parameters based on forced response information is not enough for AMB-integrated rotor system because it requires current information along with displacement information. The controlling current of AMB is tuned and controlled with a controller of proportional–integral–derivative (PID) type. A numerical technique (Lagrange's equation) is applied to get equations of motion (EOM). Runge–Kutta technique is used to obtain EOM to acquire the time domain responses. The fast Fourier transformation (FFT) is applied on obtained responses to acquire responses in the frequency domain, and full spectrum technique is applied to propose the methodology. A methodology that depends on the least squares regression approach is proposed to evaluate the multifault parameters of AMB-integrated rotor system. The robustness of the algorithm is checked against various levels of noise and modeling error and observed efficient. An appreciable reduction in misalignment forces and moments is observed by using AMBs.
Subject
Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献