Adaptive NC Path Generation From Massive Point Data With Bounded Error

Author:

Zhang Dongdong1,Yang Pinghai1,Qian Xiaoping1

Affiliation:

1. Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616

Abstract

This paper presents an approach for generating curvature-adaptive finishing tool paths with bounded error directly from massive point data in three-axis computer numerical control (CNC) milling. This approach uses the moving least-squares (MLS) surface as the underlying surface representation. A closed-form formula for normal curvature computation is derived from the implicit form of MLS surfaces. It enables the generation of curvature-adaptive tool paths from massive point data that is critical for balancing the trade-off between machining accuracy and speed. To ensure the path accuracy and robustness for arbitrary surfaces where there might be an abrupt curvature change, a novel guidance field algorithm is introduced. It overcomes potential excessive locality of curvature-adaptive paths by examining the neighboring points’ curvature within a self-updating search bound. Our results affirm that the combination of curvature-adaptive path generation and the guidance field algorithm produces high-quality numerical control (NC) paths from a variety of point cloud data with bounded error.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a novel XZ workpiece vibration generator for cooperative vibration cutting of hierarchical grating structures;Mechanical Systems and Signal Processing;2023-09

2. Adaptive spiral tool path generation for computer numerical control machining using point cloud;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-04-13

3. An efficient iso-scallop tool path generation method for three-axis scattered point cloud machining;The International Journal of Advanced Manufacturing Technology;2020-04

4. Process Optimization of Digital Conjugate Surfaces: A Review;Numerical Optimization in Engineering and Sciences;2020

5. A Method of Generating Spiral Tool Path for Direct Three-Axis Computer Numerical Control Machining of Measured Cloud of Point;Journal of Computing and Information Science in Engineering;2019-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3