A Revised Decomposition Method for MILP Problems and Its Application to Operational Planning of Thermal Storage Systems

Author:

Yokoyama R.1,Ito K.1

Affiliation:

1. Department of Energy Systems Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Sakai, Osaka, 593 Japan

Abstract

A revised decomposition method for solving large-scale mixed-integer linear programming (MILP) problems with block angular structure is presented to efficiently conduct the operational planning of thermal storage systems. The fundamental algorithm adopted here is composed of solving large-scale linear programming (LP) master problems by the Dantzig-Wolfe decomposition method and small-scale MILP subproblems by the branch and bound method, and these problems are solved repeatedly until an optimality or suboptimality criterion is satisfied. As one of the revision strategies to improve computation efficiency, a two-phase approach is introduced, by which a next LP master problem can be solved efficiently by utilizing the results of a previous one. An illustrative example on a heat supply system for district heating and cooling is given to show the effectiveness of the above revision strategy. A practical example on a heat supply system with multiple thermal storage tanks for brewing is also presented.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3