Affiliation:
1. Laboratoire de Sciences et Ingénierie de la Matière Molle (UMR 7615), Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris (ESPCI ParisTech), 10 rue Vauquelin, 75231 Paris cedex 05, France
2. Institut Préparatoire aux Etudes Scientifiques et Techniques (IPEST), BP51, 2070 La Marsa, Tunisia
Abstract
After extensive studies starting in the 1970s in relation to miscibility and piezoelectric properties, the blends of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA) have been revisited with the aim of assessing their mechanical behavior. Depending on the amount of PVDF, either amorphous or semicrystalline blends are produced. Typically, the blends remain amorphous when their PVDF content does not exceed 40 wt. %. Blend composition influence on the values of the glass transition temperature, Tg, and on its mechanical expression, Tα, is extensively discussed. Then, emphasis is put on the stress-strain behavior in tension and compression over the low deformation range covering the elastic, anelastic, and viscoplastic response. The reported data depend, as expected, on temperature and strain rate and also, markedly, on blend composition and degree of crystallinity. Molecular arguments, based on the contribution of the glass transition motions are proposed to account for the observed behavior. Thanks to the understanding of phenomena at the molecular level, accurate models can be selected in the view of mechanical modeling.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献