Fully Coupled Large Eddy Simulation-Conjugate Heat Transfer Analysis of a Ribbed Cooling Passage Using the Immersed Boundary Method

Author:

Oh Tae Kyung1,Tafti Danesh K.1,Nagendra Krishnamurthy2

Affiliation:

1. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061

2. Dassault Systems Simulia, Watham, MA 02451

Abstract

Abstract The study focuses on evaluating fully coupled conjugate heat transfer (CHT) simulation in a ribbed cooling passage with a fully developed flow assumption using large eddy simulation (LES) with the immersed boundary method (IBM-LES-CHT). The IBM-LES and the IBM-CHT frameworks are validated by simulating purely convective heat transfer in the ribbed duct, and a laminar boundary layer flow over a 2D flat plate with heat conduction, respectively. For the main conjugate simulations, a ribbed duct geometry with a blockage ratio of 0.3 is simulated at a bulk Reynolds number of 10,000 with a conjugate boundary condition applied to the rib surface. The nominal Biot number is kept at 1, which is similar to the comparative experiment. It is shown that the time scale disparity between turbulent fluid flow and heat conduction in solid can be overcome by using an artificially high solid thermal diffusivity. While the diffusivity impacts the instantaneous fluctuations in temperature and heat transfer, it has an insignificant effect on the predicted Nusselt number. Comparison between IBM-LES-CHT and iso-flux heat transfer simulations shows that the iso-flux case predicts higher local Nusselt numbers at the back face of the rib. Furthermore, the local Nusselt number augmentation ratio (EF) predicted by IBM-LES-CHT is compared with experiment and another LES conjugate simulation. The present LES calculations predict higher EFs on the leading face of the rib and show a different trend at the trailing face when CHT is activated.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3