The Decompression Behaviour of Carbon Dioxide in the Dense Phase

Author:

Cosham Andrew1,Jones David G.2,Armstrong Keith3,Allason Daniel3,Barnett Julian4

Affiliation:

1. Atkins, Newcastle upon Tyne, UK

2. Pipeline Integrity Engineers, Newcastle upon Tyne, UK

3. GL Noble Denton, Spadeadam Test Site, UK

4. National Grid, Warwick, UK

Abstract

Pipelines can be expected to play a significant role in the transportation infrastructure required for the successful implementation of carbon capture and storage (CCS). National Grid is undertaking a research and development programme to support the development of a safety justification for the transportation of carbon dioxide (CO2) by pipeline in the United Kingdom. The ‘typical’ CO2 pipeline is designed to operate at high pressure in the ‘dense’ phase. Shock tube tests were conducted in the early 1980s to investigate the decompression behaviour of pure CO2, but, until recently, there have been no tests with CO2-rich mixtures. National Grid have undertaken a programme of shock tube tests on CO2 and CO2-rich mixtures in order to understand the decompression behaviour in the gaseous phase and the liquid (or dense) phase. An understanding of the decompression behaviour is required in order to predict the toughness required to arrest a running ductile fracture. The test programme consisted of three (3) commissioning tests, three (3) test with natural gas, fourteen (14) tests with CO2 and CO2-rich mixtures in the gaseous phase, and fourteen (14) tests with CO2 and CO2-rich mixtures in the liquid (or dense) phase. The shock tube tests in the liquid (dense) phase are the subject under consideration here. Firstly, the design of the shock tube test rig is summarised. Then the test programme is described. Finally, the results of the dense phase tests are presented, and the observed decompression behaviour is compared with that predicted using a simple (isentropic) decompression model. Reference is also made to the more complicated (non-isentropic) decompression models. The differences between decompression through the gaseous and liquid phases are highlighted. It is shown that there is reasonable agreement between the observed and predicted decompression curves. The decompression behaviour of CO2 and CO2-rich mixtures in the liquid (dense) phase is very different to that of lean or rich natural gas, or CO2 in the gaseous phase. The plateau in the decompression curve is long. The following trends (which are the opposite of those observed in the gaseous phase) can be identified in experiment and theory: • Increasing the initial temperature will increase the arrest toughness. • Decreasing the initial pressure will increase the arrest toughness. • The addition of other components such as hydrogen, oxygen, nitrogen or methane will increase the arrest toughness.

Publisher

American Society of Mechanical Engineers

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3