Ultrasonic Guided Wave for Pipeline and Storage Tank Corrosion Defect Inspection

Author:

Wang Weibin1,Tong Haolin2,Dong Hongjun3,Ai Muyang1,Wu Kai4,Feng Zhanjun1

Affiliation:

1. PetroChina Pipeline R&D Center, Langfang, Hebei, China

2. Zhejiang University, Zhejiang, China

3. PetroChina Pipeline Company, Langfang, Hebei, China

4. Lanzhou Oil&Gas Transmission Sub-Company, PetroChina Pipeline Company, Lanzhou, China

Abstract

Pipeline and storage tank corrosion defect inspection is one of the most important concerns for integrity management of oil & gas storage and transportation industry. Besides the internal inspection for pipeline, tri-axis high-resolution magnetic leakage inspection technique which is applied for trunk line inspection, long range ultrasonic guided wave technique based on Lamb wave is adopted for inaccessible part inspection in technique package for pipeline inspection in PetroChina. Corrosion in the tank floor and wall is a serious threat for environmental and economic safety. Owing to the capabilities of ultrasonic guided wave which are long-range, in-plane propagation, in-service storage tank floor/wall inspection becomes possible by employing an array of SH wave transducers mounting on the edge of the outer storage tank floor. At this point, ultrasonic guided wave shows its capability for pipeline and storage tank corrosion defect inspection. With the advancement of high-performance transducer, its capability will be boosted for even longer and remoter detection. Currently, ultrasonic guided wave system for pipeline could detect defect 200 m away in ideal case while 3∼6 m for storage tank floor in practical case. The complexity of the application of ultrasonic guided wave in tank floor inspection lies in the object containing multiple lap joint welds along the large diameter of the tank (up to 100 m) and the complicated reconstruction of the two-dimensional defect distribution information. The prototype of ultrasonic guided wave system for storage tank is able to detect defects along the edge of storage tank floor. Once the propagation mechanism at overlap joint welds is broken through, the system capability is believed to be greatly improved. The main scope of the paper is to introduce the ultrasonic guided wave principles and the system design of the inspection systems for pipeline and storage tank, respectively, including the system electrical module, hardware program and the module of data acquisition, analysis and processing. Besides, the field application study cases are included to show the capability of both systems and their potential for integrity management in oil & gas storage and transportation field.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3