Design and Development of a Research Combustor for Lean Blow-Out Studies

Author:

Sturgess G. J.1,Sloan D. G.1,Lesmerises A. L.2,Heneghan S. P.3,Ballal D. R.3

Affiliation:

1. Pratt & Whitney, East Hartford, CT 06108

2. WRDC/POSF, Wright-Patterson AFB, OH 45433

3. University of Dayton, Dayton, OH 45429

Abstract

In a modern aircraft gas turbine combustor, the phenomenon of lean blow-out (LBO) is of major concern. To understand the physical processes involved in LBO, a research combustor was designed and developed specifically to reproduce recirculation patterns and LBO processes that occur in a real gas turbine combustor. A total of eight leading design criteria were established for the research combustor. This paper discusses the combustor design constraints, aerothermochemical design, choice of combustor configurations, combustor sizing, mechanical design, combustor light-off, and combustor acoustic considerations that went into the final design and fabrication. Tests on this combustor reveal a complex sequence of events such as flame lift-off, intermittency, and onset of axial flame instability leading to lean blowout. The combustor operates satisfactorily and is yielding benchmark quality data for validating and refining computer models for predicting LBO in real engine combustors.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3