Unsteady Flow in a Turbocharger Centrifugal Compressor: 3D-CFD-Simulation and Numerical and Experimental Analysis of Impeller Blade Vibration

Author:

Dickmann Hans-Peter1,Secall Wimmel Thomas1,Szwedowicz Jaroslaw1,Filsinger Dietmar1,Roduner Christian H.1

Affiliation:

1. ABB Turbo Systems, Ltd., Baden, Switzerland

Abstract

Experimental investigations on a single stage centrifugal compressor showed that measured blade vibration amplitudes vary considerably along a constant speed line from choke to surge. The unsteady flow has been analysed to obtain detailed insight into the excitation mechanism. Therefore, a turbocharger compressor stage impeller has been modeled and simulated by means of Computational Fluid Dynamics (CFD). Two operating points at off-design conditions were analysed. One was close to choke and the second one close to the surge line. Transient CFD was employed, since only then a meaningful prediction of the blade excitation, caused by the unsteady flow situation, can be expected. Actually, it was observed that close to surge a steady state solution could not be obtained; only transient CFD could deliver a converged solution. The CFD results show the effect of the interaction between the inducer casing bleed system and the main flow. Additionally, the effect of the non-axisymmetric components, such as the suction elbow and the discharge volute, was analysed. The volute geometry itself had not been modeled. It turned out to be sufficient to impose a circumferentially asymmetric pressure distribution at the exit of the vaned diffuser to simulate the volute. Volute and suction elbow impose a circumferentially asymmetric flow field, which induces blade excitation. To understand the excitation mechanism, which causes the measured vibration behavior of the impeller, the time dependent pressure distribution on the impeller blades was transformed into the frequency domain by Fourier decomposition. The complex modal pressure data were imposed on the structure that was modeled by Finite Element Methods (FEM). Following state-of-the-art calculations to analyze the free vibration behavior of the impeller, forced response calculations were carried out. Comparisons with the experimental results demonstrate that this employed methodology is capable of predicting the impeller’s vibration behavior under real engine conditions. Integrating the procedure into the design of centrifugal compressors will enhance the quality of the design process.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3