Thermoacoustic Stability Analysis of an Annular Combustion Chamber With Acoustic Low Order Modeling and Validation Against Experiment

Author:

Kopitz Jan1,Huber Andreas1,Sattelmayer Thomas1,Polifke Wolfgang1

Affiliation:

1. Technische Universita¨t Mu¨nchen, Garching, Germany

Abstract

A low order acoustic network model is used to examine the stability of an annular combustor for different operating points. The results obtained by this approach are compared against experimental data from a full annular combustor. This annular combustor, in contrast to commonly used single burners or sector rigs, was used to include also 2-dimensional effects like the influence of circumferential modes, which can occur in practical gas turbine applications. The influence of the flame enters the network model simulation through an experimentally measured flame transfer function in terms of the response of heat release to acoustic velocity fluctuations. This flame transfer function, which has been measured at a stable operating point, is then used as a basis for the determination of flame transfer functions at other operating points by means of scaling methods. The transition to instability is thereby simulated by determination of the complex eigen modes, applying methods from control theory. The analytically determined stability behavior is compared to the experimentally measured one, with the aim to enhance and validate the network model approach as a means of predicting combustion instabilities in early design stages.

Publisher

ASMEDC

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3